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SUMMARY This paper introduces a method that identifies
human activity from the height and Doppler Radar Cross Section
(RCS) information detected by Multiple-Input Multiple-Output
(MIMO) radar. This method estimates the three-dimensional
target location by applying the MUltiple SIgnal Classification
(MUSIC) method to the observed MIMO channel; the Doppler
RCS is calculated from the signal reflected from the target. A ges-
ture recognition algorithm is applied to the trajectory of the tem-
poral transition of the estimated human height and the Doppler
RCS. In experiments, the proposed method achieves over 90%
recognition rate (average).
key words: MIMO array, human activity identification, human
localization, MUSIC method, microwave sensors, Doppler RCS.

1. Introduction

Wi-Fi is now a very popular access system technology.
While developed for communication Wi-Fi can also be
used to realize sensing-based services. The aging soci-
ety raises new social concerns such as lonely death, and
the increase in the number of elderly people demands
to sense systems that can observe the elderly by de-
tecting activities such as falls. Internet of thing devices
such as networked video cameras [1] or wearable sensors
[2][3] can be used to monitor the elderly. However, the
former violates privacy in spaces such as the bathroom
and restroom, and it provides only line-of-sight cover-
age. The latter requires wearing sensors continuously,
and so places excessive physical and mental burdens
on the user. This approach is also unsuitable for the
elderly because observation depends on the person re-
membering to wear the device.

Microwave sensing provides another approach to
protecting the elderly. Its key features are privacy as-
surance and contact-less observation, no wearable de-
vice is needed [4]-[6]. Microwave-based monitoring can
be realized by Direction of Arrival (DOA)/Direction
of Departure (DOD) based Multiple-Input Multiple-
Output (MIMO) radar systems [7][8]. Although such
systems can localize targets, their precision is inade-
quate because the desired signal is interfered by un-
desired waves due to the multi-path environment of
most private homes. We need a system/algorithm suit-
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able for human localization in multi-path environments.
Known approaches include Time Difference of Arrival
(TDOA) estimation [9][10], and trigonometry meth-
ods based on DOA/DOD estimation using the MUSIC
method [11]-[14]. Though TDOA localizes targets even
in multi-path environments, it needs a wide-band sig-
nal of over 1.79 GHz (from 5.46 GHz to 7.25 GHz)
and can only estimate the target location. Moreover,
static channels are essential, i.e. the environment with-
out humans must be measured in advance, and the
measurements must be repeated if the environment is
changed, e.g., a piece of furniture is shifted. The lo-
calization method based on MUSIC [11] uses a low-
frequency band, 250 MHz, and estimates target loca-
tion by using spherical mode MUSIC to process the
oscillating return signal. Unfortunately, in this method
the array aperture must be comparable to the estimated
distance because of the low frequency, observation pe-
riods of over 10 seconds are necessary. DOD/DOA-
based MIMO radars using the trigonometry technique
[12]-[14] can localize the target by Fourier transforming
the MIMO channel [15]. However, this method needs
to observe the channel for several tens of seconds to
accurately capture human biological information, and
the only target location is estimated.

Fortunately, human activity recognition is possible
by using microwave sensors [16]- [18]. These methods
can estimate human activity in actual environments.
[16] and [17] measure channel state information (CSI)
affected by a human activity, and they identify the ac-
tivity by using the characteristics of the Doppler shift
of the CSI. However, these methods cannot estimate a
target location, and fail to identify an activity if mul-
tiple people occupy the same environment because the
Doppler effect of the activity, which is generated by
multiple targets, is mixed. [18] estimates the position
of the object in the house and can be used for activity
recognition. However, this method cannot actually de-
tect actions, because the position is used to identify the
activity. For example, cooking is the activity associated
with the position of the kitchen.

The authors have already proposed a human pos-
ture identification method that uses a MIMO array [19].
This method estimates target location in three dimen-
sions by using the time-differential channel technique
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Fig. 1: Concept of microwave system for human activity
identification.

[20][21]; the Doppler RCS is calculated from the power
reflected from the target and the distance between
the estimated location and the receiver/transmitter.
Though the method can accurately estimate human lo-
cation with the root mean square error (RMSE) of just
0.25 m, it handles only static targets. The authors have
also studied estimating human activity from height and
Doppler Radar Cross Section (RCS) information de-
tected by MIMO radar [22][23] that uses a single fre-
quency, 2.47 GHz. However, work reported was a just
initial study, and no formal identification algorithm was
described. To rectify this omission, this paper presents
a complete human activity identification method that
uses MIMO radar. The trajectories of the temporal
transition of the estimated height and the Doppler RCS
are extracted, and a gesture recognition algorithm [24]
is applied to the trajectory. Experiments carried out
in an actual indoor environment demonstrate that the
proposed method can identify human activity with an
accuracy of over 80%.

2. Human Activity Identification Using MIMO
Radar

The authors previously proposed a fast localization al-
gorithm that estimates subject location by using the
time-variant channel in multi-path environments [20].
In this study, we apply the localization algorithm to the
observed channel, and the three-dimensional location of
the subject is estimated by MIMO radar. The Doppler
RCS is calculated from the received power spectrum
and the distance between the transmitter/receiver,
which is calculated from the estimated target location.
This algorithm detects the period of the activity from
the peaks in Doppler RCS because the Doppler RCS
greatly fluctuates with subject motion. After detecting
the period of the activity, the gesture recognition algo-
rithm [24] is introduced to identify the activity. The
following section explains the method in detail.

2.1 Three-dimensional Human Localization

Figure 1 show the concept of our microwave system for
human activity identification. This study assumes a
MIMO radar with an Mr element array receiver and an
Mt element array transmitter. In a multi-path environ-
ment containing one person, the time-variant channel is
generated by the fluctuations of the human body’s sur-
faces due to motion, respiration, and heartbeat. Here,
the Mr ×Mt time-variant MIMO channel is expressed
as,

H(t) =

 h11(t) . . . h1Mt(t)
...

. . .
...

hMr1(t) . . . hMrMt(t)

 , (1)

where, hij is the complex channel response from the
j-th transmitter element to the i-th receiver element,
and t represents the observation time. Mr×Mt MIMO
radar can be considered to be MrMt×1 virtual Single-
Input Multiple-Output (SIMO) radar [8]. The con-
verted SIMO channel is expressed as,

h(t) = [h11(t), . . . , hMr1(t), . . . , hMrMt
(t)]T , (2)

where, {·}T means transposition. DOA and DOD of
the target can be estimated using this virtual SIMO
channel, but unwanted path components disturb the
estimates of the human location. The unwanted path
components consist of the direct wave from transmit-
ter to receiver and waves reflected from the wall, floor
and furniture; fortunately, these components are static.
On the other hand, the wave reflected from the human
body fluctuates because of the user?s motion, respi-
ration, and heartbeat. Therefore, the undesired com-
ponents are excluded by applying the fast localization
algorithm to the converted SIMO channel. This algo-
rithm uses the time-differential channel, which is de-
fined as,

hsb(t, tsb) = h(t)− h(t+ tsb), (3)

where, tsb represents the time difference. Here, we cal-
culate the averaged correlation matrix R as,

R = Ri(t, tsb), (4)

Ri(t, tsb) = hsb(t, tsb)hsb(t, tsb)
H , (5)

where, {·} is the averaging operator, Ri represents the
instantaneous correlation matrix, {·}H means complex
conjugate transposition. In (4), t and tsb are averaging
parameters. By eigenvalue decomposition, the averaged
correlation matrix R is given by,

R = UΛUH , (6)

U = [u1, ...,uMrMt ], (7)

Λ = diag([λ1, ..., λMrMt ]), (8)



where, U and Λ represent the eigenvector and the
diagonal matrix representing eigenvalues, respectively.
Note that the eigenvalues, Λ, are related as follows,

λ1 > λ2 = · · · = λMrMt = σ2
f (9)

where, σ2
f represents the expected value of the

power of the channel component fluctuation created
by noise. The eigenvector corresponding to noise,
[u2, · · · ,uMrMt

], is expressed as UN because one target
is assumed. In this study, subject location is estimated
by three-dimensional MUSIC with spherical mode vec-
tor; an extension of the original MUSIC method [7] to
cover the 3D domain. The three-dimensional spherical
mode vector a(x, y, z) is expressed as,

a(x, y, z) = at ⊗ ar, (10)

at(x, y, z) = [e−j2π/λDt1 , . . . , e−j2π/λDtMt ]T , (11)

ar(x, y, z) = [e−j2π/λDr1 , . . . , e−j2π/λDrMr ]T , (12)

where, at(x, y, z) and ar(x, y, z) are the steering vec-
tors at the transmitting and receiving side, respectively.
⊗ represents the Kronecker product, λ is wavelength,
Dtj/Dri means the distance between position (x, y, z)
and the j-th transmitter element/i-th receiver element,
respectively. The evaluation function of the MUSIC
method (MUSIC spectrum) is written as,

P (x, y, z) =
aH(x, y, z)a(x, y, z)

aH(x, y, z)UNUH
Na(x, y, z)

. (13)

The MUSIC spectrum peak represents the estimated
target location.

2.2 Calculating Doppler RCS

The first eigenvector, u1, of (7) corresponds to target
location. The converted SIMO channel, h(t), (2) and
the first eigenvector, u1, are multiplied to enhance the
biological component of the target, and this signal, y(t),
is expressed as,

y(t) = uH1 h(t)s, (14)

where s is the transmitted signal, which is a continu-
ous wave, i.e. s is a constant value in this study. The
observed signal, y(t), is Fourier-transformed, and is de-
fined as F (ω). Then, the received power, Pr(ω) is ex-
pressed as,

Pr(ω) =
|F (ω)|2

MrMt
, (15)

where, ω represents frequency. Here, the Doppler radar
cross section (RCS) is defined by solving the radar

( , )

( , )

Fig. 2: Moving distance, ∆Pi, and the direction of move-
ment, αi.

Fig. 3: Determination of the direction code when the divi-
sion number of direction code, Nd, is 8.

range equation for σ; this is expressed as,

σ =
(4π)3r2rr

2
t

GrGtλ2Pt

∫ f2

f1

Pr(ω)dω, (16)

rr =
√

(xe −Xr)2 + (ye − Yr)2 + (ze − Zr)2, (17)

rt =
√

(xe −Xt)2 + (ye − Yt)2 + (ze − Zt)2), (18)

where, rr and rt represent the distances of the esti-
mated target location from the centers of the receiver
and transmitter antennas, respectively. (xe, ye, ze) is
the estimated location of the target. (Xr, Yr, Zr) and
(Xt, Yt, Zt) are the center of the receiver and trans-
mitter antennas, respectively. Pt represents the trans-
mitting power and Gr and Gt are the gain of receiving
antenna and transmitting antenna, respectively. f1 and
f2 define the frequency range that encompasses the vi-
tal sign effects.

2.3 Human Activity Identification Using Gesture
Recognition Algorithm

We obtain the estimated location and the Doppler
RCS by (13) and (16), respectively. The Doppler RCS
greatly fluctuates during the subject action. There-
fore, this algorithm detects the period of the activity
by searching the large Doppler RCS. After detecting
the period of the activity, the gesture recognition algo-
rithm [24] is used to identify the human activity. Then,
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Fig. 4: Concept of comparing model code Dk to observed
code dj .

the temporal transition of height, zi, and Doppler RCS,
σi, is obtained by continuous estimation, where zi and
σi represent the i-th estimated height and i-th calcu-
lated Doppler RCS, respectively. Figure 2 shows the
moving distance, ∆Pi, and the direction of movement,
αi; they are defined as,

∆Pi =
√

(σi − σi−1)2 + (zi − zi−1)2, (19)

αi = tan−1
zi − zi−1
σi − σi−1

. (20)

The trajectories of the height and Doppler RCS are
given by (19) and (20).

Direction codes are determined from the direction
of movement, αi, between the two sampled points on
the trajectory. Figure 2 shows that the direction code
corresponds to the movement, αi; the division num-
ber of direction code, Nd, is 8 in this study. Figure 3
shows the determination of the direction code in this
study. However, the number of trajectory points differs
even for the same activity because the speeds of the
activity are not same for all trials. For this reason, the
length of the direction code is normalized regardless of
the trajectory speed. A normalized code, Dk, is gen-
erated from original direction code dj by considering
the code length and the period of the activities, where
the lengths of normalized code Dk and original direc-
tion code dj are Ns and No, respectively. Here, code
lengths Ns and No satisfies the relation,

No ≤ Ns. (21)

The flow of conversion from the original code dj to the
standardized code Dk is shown below.
i) When the index j (j: index number in the raw code)
is 1, the normalized code Dk is defined as,

Dk = d1

(1 ≤ k ≤ ∆P1

∆Psum
×Ns), (22)

∆Psum =

No∑
j=1

∆Pi, (23)

where, k is the index number in the normalized code.
ii) When the index range is 2 ≤ j ≤ No, the normalized
code Dk is defined as,

Dk = dj ,

(

∑j−1
i=1 ∆Pi

∆Psum
× Ns < k ≤

∑j
i=1 ∆Pi

∆Psum
×Ns). (24)

Then, the trajectory is converted into the direction
code. The training data of all actions is made and
identified. An observed trajectory is converted into the
appropriate direction code, and the deviation from all
training codes is calculated. The model codes were gen-
erated from the most frequent values of the feature as
discovered in 10 trials for each motion, and the gener-
ated model code is defined as Dmodel.

Figure 4 shows the concept of comparing the model
code and an observed code, where the normalized code
of the observed activity is defined as dtest. The sum of
squared deviation, E, which is used for activity identi-
fication, is defined as,

E =

Ns∑
l=1

δd2l , (25)

δdl = |dtest,l −Dmodel,l|, (26)

where, dtest,l and Dmodel,l represent the l-th direction
codes of the observation code and the model code, re-
spectively. However, since the direction code is circular
as shown in Fig. 2, the maximum difference in the direc-
tion code that can be taken is one half of the direction
division number Nd, i.e. 4 in this study. Therefore,
when δdl ≥ Nd/2, δdl is replaced as follows,

dl = Nd − δdl. (27)

The sum of squared deviation, E, is calculated for the
model code of each activity, and the current action is
classified to one of the learned actions by finding the
training code with minimum deviation from the current
one.

The agility and accuracy of the estimation have
a trade-off relationship. In this study, the observation
time should be short to detect human activity, but then



Table 1: Measurement conditions.
Antenna element (Tx/ Rx) 16-element patch antenna

Distance between Tx and Rx, d 4 m

Height of the Tx/ Rx, h 1.0 m

Frequency 2.47125 GHz

Tx power -10 dBm

Snapshot rate 100 Hz

Channel measurement period 0.64 s
Interval of localization

and calculating Doppler RCS 0.25 s

Tx array Rx array

Y

X

Z

Signal
generator

Data acquisition
unit (DAQ)

Down
converter

LNASP64T

Amplifier

Q16I16Q1I1
…

… …

m

m

…

Fig. 5: Measurement overview.

Patch antenna

PTFE substrateFixture

Fig. 6: Photo of MIMO array.

the estimated values vary widely. Therefore, a filtering
technique is applied to the estimated values to improve
identification accuracy.

3. Experimental Condition and Measurement
Setup

Table 1 and Figure 5 overview the measurement setup.
The element space of the arrays of receiver and trans-
mitter was one half the wavelength. The distance be-
tween transmitting and receiving antennas was set to
4.0 m. The receiver and the transmitter were directed
to the center of the room. As shown in Figure 5, a
Single-Pole 64 Throw (SP64T) switch was used at the
transmitting side. Though the exact observation mo-
ment is not the same for all elements in the MIMO
channel matrix, the time differences among the ele-
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Receiver Transmitter

0 1.0 2.0 3.0 4.0
X [m]

Y [m]

0
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Fig. 7: Experimental room with concrete walls; its width,
depth and height were 7.0, 6.0 and 2.7 m, respec-
tively.

(a) Sitting down (b) Falling down

(c) Standing up
from a chair

(d) Getting up
from a bed

Fig. 8: Human activities tested.

ments are so short compared to the vital and moving
activity that they can be ignored. A continuous wave
(CW) signal of 2.47125 GHz was used; the transmit-
ting power was set to -10 dBm. The CW signal was
split to the down-converter at the receiver side since
accurate synchronization between transmitting and re-
ceiving sides is needed. At the receiver side, received
signals are input to a down-converter unit by way of a
Low-Noise Amplifier (LNA) unit. The down-converted
baseband signals (I1, Q1,∼I16, Q16 ) were digitized by a
data-acquisition unit (DAQ) with sampling frequency
of 20 kHz. The snapshot rate of the MIMO channel
is determined by the switching speed of the SP64T.
In the experiments, the rate for taking a snapshot of
the MIMO channel was set to 100 Hz. In this study,
the observation period for localization and calculating
Doppler RCS was set to 0.64 seconds. Thus the number
of snapshots per single observation period was 64. The
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transmission components of S parameters were used as
the propagation channel. Figure 6 shows a photo of the
array antenna used as the receiver and the transmitter.
16× 16 MIMO radar was used in the experiment. The
receiver and transmitter have 4×4 patch antennas on a
square grid. All array antennas used a PTFE substrate,
and antenna thickness, width, and height were 1.6, 60
and 240 mm, respectively. These elements have a verti-
cal polarization. The array’s center was set to h = 1.0
m, which corresponds to the torso height of the sub-
jects. The number of targets was determined following
the MUSIC method. The normalized code length Ns
was set to 100. In this study, time difference tsb was
set to 0.05 [s] ≤ tsb ≤ 0.63 [s] for localization, while the
range of frequency was set from 1.56 Hz to 10.94 Hz
in calculating the Doppler RCS; antenna gain Gr and
Gt was 4.96 dB, which is the average gain value from
−40◦ to 40◦. Figure 7 shows the experimental room.
The experiment was carried out in a room containing
desks and shelves. The room had concrete walls and
its width, depth and height were 7.0, 6.0 and 2.7 m,
respectively. The measurement location of the target
was set to (x, y) = (2.0, 2.0) [m].

Figure 8 shows the human activities tested in this
campaign. While the channels were being captured, the
subject performed 4 activities: sitting down (a), falling
down (b), standing up from a chair (c), and getting
up from a bed(d). The model codes were generated
from the most frequent values of the feature observed
in 10 trials for each motion, and the recognition rate
with all motions was calculated using 10 recognition
experiments (all activities).

4. Experimental Results

Figure 9 shows an example of the time-variant channel
response, h11, of the observed channel when the target
sat down. In this figure, the channel variation exhibits
the periodic biological activities such as respiration be-
fore and after action. Obviously, the channel widely
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Fig. 11: Example of the trajectory of the estimated height
and Doppler RCS for subject activities of sitting
down and falling down.

Table 2: Average recognition rates of the human activity
for all filters.

Filter Recognition rate

No filter 82.5%

Median (fourth-order) 80%

Moving average(fourth-order) 92.5%

changes during sitting down.
Figure 10 shows the temporal transition in the es-

timated height and the Doppler RCS when the chan-
nel of Figure 9 was used. This figure shows that the
human activities yielded large Doppler RCS. The esti-
mated height values were about 1 meter in the first half,
and the estimated height values were lower than pre-
vious state after sitting down. On the other hand, the
estimated height exhibits significant variation because
of the short observation time.

Figure 11 shows an example of the trajectory of
the estimated height and Doppler RCS when the sub-
ject sat down and fell down. Note that the subject
was standing still before those actions, and the figure
shows that the start values of the estimated height are
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Fig. 12: Example of the trajectory of the estimated height
and Doppler RCS for the activities of standing up
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clustered near 1.0 m. The two activities yielded dif-
ferent trajectories. With activity completion, the es-
timated heights of sitting down and falling down clus-
tered around 0.7 m and 0.2 m, respectively.

Figure 12 shows an example of the trajectory of the
estimated height and Doppler RCS for the subject ac-
tivities of standing up from a chair and getting up from
a bed. The initial positions for these activities were
sitting on the chair and lying on the bed, respectively.
The figure shows that the initial values of the activities
of standing up from a chair and getting up from a bed
clustered around 0.7 m and 0.3 m, respectively. The
action of the standing up from a chair showed a sharp
trajectory. On the other hand, the action of getting
up from a bed yielded a trace like a circle. After the
action, the both estimated heights gathered near 1.0 m.

Fig. 13 shows an example of the trajectory of the
estimated height and Doppler RCS when the target sat
down. Figure 13(a) show the trajectory without any
filter, Figure 13(b) and (c) show the results processed
by the fourth-order median filter and the fourth-order
moving average filter, respectively. In this figure, the
trajectories yielded by using raw values vary widely be-
cause the observation time used to estimate location
and Doppler RCS is short. On the other hand, the
filtered trajectories exhibit no outliers and reduced dis-
persion.

Figure 14 shows the training code and test data
for the activity of sitting down. The training code was
taken to be most frequent value recorded in 10 trials.
This figure shows that the test data well agrees with
the training code, and in this test the activity was cor-
rectly identified as sitting-down motion. Table 2 shows
the averaged recognition rate of the human activity for
all filters. The averaged recognition rate is the mean
value of the identification rate of all motions. In this
table, the recognition rate with no filter was 82.5%.
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Fig. 13: Example of the trajectory of the estimated height
and Doppler RCS with/without filter.

In comparison, the averaged recognition rate with the
fourth-order median filter was 80% (lower than the rate
with no filter); while the result with the fourth-order
moving average filter was 92.5%, a significant improve-
ment in the recognition rate.

Fig.15 shows the confusion matrix of the recogni-
tion rate of the result with the moving average filter.
From this figure, all recognition rates exceeded 80%.
To validate the effectiveness of the proposed method,
we evaluated the recognition performance of another
algorithm, where the temporal correlation between the
training and test data is used. In this algorithm, the ob-
served activity is classified as the training activity with
maximum correlation. Figure 16 shows the confusion
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Fig. 15: Confusion matrix of the recognition rate of the
result with moving average filter.

matrix of the recognition rate of the correlation-based
algorithm. From this figure, the maximum recognition
rate was 60% for falling down, and the average recogni-
tion rate was 45%. This result shows that the proposed
method achieves highly accurate activity identification.

Figure 17 shows an example of the prediction er-
ror. In this figure, the observed activity was getting up
from the floor, while the identified activity was stand-
ing up from a chair. As can be seen from the figure,
the model codes of both activities are similar, and this
caused prediction error. These errors can be reduced
by estimating the posture before and after the activity
and to correct incorrect decisions.

5. Conclusion

This paper proposed and demonstrated a human ac-
tivity identification method that is based on estimat-
ing the height and Doppler RCS information from
MIMO radar data. In this paper, we introduced three-
dimensional localization and calculation of the Doppler
RCS. A gesture recognition algorithm was applied to
the trajectory of the temporal transitions of the es-
timated height and the Doppler RCS. Experiments
showed that the highest recognition rate was 92.5% on
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from a chair

Getting up 
from a floor

Actual 
activity

Sitting
down

0.4 0.6 0 0

Falling 
down

0.3 0.6 0 0.1

Standing up 
from a chair

0.4 0.2 0.4 0

Getting up 
from a floor

0.3 0.2 0.1 0.4

Fig. 16: Confusion matrix of the recognition rate of the raw
observation channel.
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Fig. 17: Example of prediction error, when the activity was
“getting up from the floor”, and this was identified
as “standing up from a chair”.

average for the classification of four common activities:
sitting down, falling down, standing up from a chair,
and getting up from a bed. This proves that the pro-
posed method well estimates human activities in the
home. This paper assumes an environment contain-
ing only one target, while a realistic environment often
contains multiple targets. When there are multiple tar-
gets in the same environment, the targets’ signals are
mixed in the observed channel. Therefore, the human
activity identification requires to distinguish the multi-
ple targets’ signals. In our future work, we will study
an algorithm for detecting multiple targets’ activities
in a realistic environment.
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